A low-complexity joint range and Doppler frequency-modulated continuous wave (FMCW) radar algorithm based on the number of targets is proposed in this paper. This paper introduces two low-complexity FMCW radar algorithms, that is, region of interest (ROI)-based and partial discrete Fourier transform (DFT)-based algorithms. We find the low-complexity condition of each algorithm by analyzing the complexity of these algorithms. From this analysis, it is found that the number of targets is an important factor in determining complexity. Based on this result, the proposed algorithm selects a low-complexity algorithm between two algorithms depending the estimated number of targets and thus achieves lower complexity compared two low-complexity algorithms introduced. The experimental results using real FMCW radar systems show that the proposed algorithm works well in a real environment. Moreover, central process unit time and count of float pointing are shown as a measure of complexity.clutter, there is no Doppler effect. Hence, two beat signals are the same except for noise term and thus the difference of two beat signals contains only noise term. On the other hand, in the case of moving target, there is Doppler effect due to the moving target and thus the difference of them contains the range information of moving target. However, this algorithm might miss the moving target with certain velocity because this algorithm fixedly employs two beat signals. In order to overcome this disadvantage, an FMCW radar algorithm has been proposed by randomly employing two beat signals in [14]. This algorithm effectively avoids missing a target with a certain velocity by randomly selecting two beat signals every frame. In addition, this algorithm performs an angle detection algorithm only if there is a moving target. Therefore, this algorithm reduces the overall complexity. However, this algorithm has still a disadvantage in that it does not detect the velocity of the target. This is because the difference between the two beat signals is used to reduce the complexity of the moving target detection process and in this process, information necessary for the velocity detection of the target is lost.Meanwhile, in [15][16][17][18], low-complexity detection algorithms for FMCW radar have been proposed which intend to reduce the number of FFTs compared to a full-dimension FFT-based FMCW radar algorithm. These algorithms determine a region of interest (ROI), thus reducing the number of inputs in the FFTs for Doppler estimation. However, there is still unnecessary computational complexity in these algorithms, although the complexity is reduced. The number of range bins used as the input in FFTs for Doppler estimation depends on the number of targets. In this algorithm, all chirp signals are used in an FFT to determine the range bins in which peaks exist. However, there is a disadvantage in that the number of range bins calculated in the first FFT for range estimation is too large compared to the number of range bins used as inputs in the FFT fo...