Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
We consider the Keplerian distance d in the case of two elliptic orbits, i.e., the distance between one point on the first ellipse and one point on the second one, assuming they have a common focus. The absolute minimum $$d_{\textrm{min}}$$ d min of this function, called MOID or orbit distance in the literature, is relevant to detect possible impacts between two objects following approximately these elliptic trajectories. We revisit and compare two different approaches to compute the critical points of $$d^2$$ d 2 , where we squared the distance d to include crossing points among the critical ones. One approach uses trigonometric polynomials, and the other uses ordinary polynomials. A new way to test the reliability of the computation of $$d_{\textrm{min}}$$ d min is introduced, based on optimal estimates that can be found in the literature. The planar case is also discussed: in this case, we present an estimate for the maximal number of critical points of $$d^2$$ d 2 , together with a conjecture supported by numerical tests.
We consider the Keplerian distance d in the case of two elliptic orbits, i.e., the distance between one point on the first ellipse and one point on the second one, assuming they have a common focus. The absolute minimum $$d_{\textrm{min}}$$ d min of this function, called MOID or orbit distance in the literature, is relevant to detect possible impacts between two objects following approximately these elliptic trajectories. We revisit and compare two different approaches to compute the critical points of $$d^2$$ d 2 , where we squared the distance d to include crossing points among the critical ones. One approach uses trigonometric polynomials, and the other uses ordinary polynomials. A new way to test the reliability of the computation of $$d_{\textrm{min}}$$ d min is introduced, based on optimal estimates that can be found in the literature. The planar case is also discussed: in this case, we present an estimate for the maximal number of critical points of $$d^2$$ d 2 , together with a conjecture supported by numerical tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.