We present a class of algorithms based on rational Krylov methods to compute the action of a generalized matrix function on a vector. These algorithms incorporate existing methods based on the Golub-Kahan bidiagonalization as a special case. By exploiting the quasiseparable structure of the projected matrices, we show that the basis vectors can be updated using a short recurrence, which can be seen as a generalization to the rational case of the Golub-Kahan bidiagonalization. We also prove error bounds that relate the error of these methods to uniform rational approximation. The effectiveness of the algorithms and the accuracy of the bounds is illustrated with numerical experiments.
The use of fractional differential equations is a key tool in modeling non-local phenomena. Often, an efficient scheme for solving a linear system involving the discretization of a fractional operator is computing inverse fractional powers of the standard discretized Laplace operator. In this work, an exponential sum approximation for such fractional powers is derived. It is accurate over all positive real numbers larger than one, and allows to efficiently approximate the action of such operators on tensors stored in a variety of low-rank formats (CP, TT, Tucker). The results are relevant from a practical and theoretical perspective, as they predict the low-rank approximability of the solutions of these linear systems in low-rank tensor formats.
We present a class of algorithms based on rational Krylov methods to compute the action of a generalized matrix function on a vector. These algorithms incorporate existing methods based on the Golub-Kahan bidiagonalization as a special case. By exploiting the quasiseparable structure of the projected matrices, we show that the basis vectors can be updated using a short recurrence, which can be seen as a generalization to the rational case of the Golub-Kahan bidiagonalization. We also prove error bounds that relate the error of these methods to uniform rational approximation. The effectiveness of the algorithms and the accuracy of the bounds is illustrated with numerical experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.