Background: By the end of August 2020, >23 million cases and 800,000 deaths were attributed to SARS-CoV-2 in >200 countries. The improvement of simple, rapid, and efficient detection methods is of great significance for the early detection, timely isolation, and protection of susceptible populations. This study aimed to provide an alternative method for the rapid detection of viral nucleic acid.Methods: This study provided a rapid nucleic acid detection method mediated by recombinant enzyme based on the novel coronavirus (SARS-CoV-2). Primers and probes were designed based on the N gene sequence of coronavirus. The method was performed at 39 °C, the detection time was short (<20 min), and the detection limit was up to 101 copies/mL.Results: The primer-probe did not show any cross-reaction with adenovirus, Zika virus, influenza B virus, and chikungunya virus, with good specificity. A total of 106 clinical throat swab samples were compared by reverse transcription recombinase-aided amplification (RT-RAA) and commercial reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR); the results were identical.Conclusions: The novel coronavirus RT-RAA method established in this study had high sensitivity, strong specificity, simple operation, and fast detection speed, and hence, is suitable for the rapid detection of novel coronavirus under the current epidemic situation.