The rapid worldwide spread of the COVID-19 pandemic, caused by the severe acute respiratory SARS-CoV-2, has created an urgent need for its diagnosis and treatment. As a result, many researchers have sought to find the most efficient and appropriate methods to detect and treat the SARS-CoV-2 virus over the past few months. Real-time reverse-transcriptase polymerase chain reaction (RT-PCR) testing is currently used as one of the most reliable methods to detect the new virus; however, this method is time-consuming, labor-intensive, and requires trained laboratory workers. Moreover, despite its high sensitivity and specificity, false negatives are reported, especially in non-nasopharyngeal swab samples that yield lower viral loads. Therefore, designing and employing faster and more reliable methods seems necessary. In recent years, many attempts have been made to fabricate various nanomaterial-based biosensors to detect viruses and bacteria in clinical samples. The use of nanomaterials plays a significant role in improving the performance of biosensors. Plasmonic biosensors, field-effect transistor (FET)-based biosensors, electrochemical biosensors, and reverse transcription loop-mediated isothermal amplification (RT-LAMP) methods are only some of the effective ways to detect viruses. However, to use these biosensors to detect the SARS-CoV-2 virus, modifications must be performed to increase sensitivity and speed of testing due to the rapidly spreading nature of SARS-CoV-2, which requires an early point of care detection and treatment for pandemic control. Several studies have been carried out to show the nanomaterial-based biosensors' performance and success in detecting the novel virus. The limit of detection, accuracy, selectivity, and detection speed are some vital features that should be considered during the design of the SARS-CoV-2 biosensors. This review summarizes various nanomaterials-based sensor platforms to detect the SARS-CoV-2, and their design, advantages, and limitations.