Nowadays, in the clinical, pharmaceutical, and environmental sectors, the development of facile and sensitive analytical methods and/or innovative devices for the follow-up and detection of antibiotics and pharmaceutical formulations, in general, are urgently needed and still challenging. This work declared three vital applications for broad-spectrum nitrofurantoin (macrofuran) antibiotic detection and quantification: A colorimetric method, a coated paper strip-based nano-lanthanum complex prototype and fabrication of smart electronic color sensor device-based coated paper strips. The colorimetric method showed a significant response upon increasing the concentration of the nitrofurantoin in a range between (1.0–100.0 ng/mL) via a visual color change from orange-yellow to red colors degree with detection and quantification limits of 0.175 and 0.53 ng/mL, respectively, whereas the nano-lanthanum complex coated paper strip prototype showed qualitative on-site sensing for nitrofurantoin via naked eye color changes which can be detected anywhere. Moreover, a smart prototype for detecting macrofuran in the means of paper color change in the RGB color component extraction algorithm and the grayscale projection value processing algorithm was fabricated. The change in RGB color on the coated paper strip was detected using an electronic color sensor device. The developed colorimetric method, coated paper strip, and the electronic color sensor device prototype exhibited fast, simple, costless, and selective towards macrofuran over the competing analyzed. As well as, showed good applicability in the different real samples spiked with different concentrations of macrofuran.
Graphical abstract