This study explores the existing literature on specific energy consumption (SEC) use for paddy drying and consolidates all relevant data for comparisons across technologies. Energy consumption data for a range of drying technologies are consolidated from published literature and normalized to enable comparison. A large proportion of the source data are generated from operational performance in industrial or laboratory settings, while the remainder is derived from computer simulations. The SEC of paddy drying is driven primarily by technology type; however, operational factors (such as the system size, temperature, and airflow) and external factors (such as the local climate and paddy moisture content) also heavily influence system energy use. The results of our analysis show that the industrial drying technologies explored in this study have an average SEC of 5.57 ± 2.21 MJ/kg, significantly lower than the 20.87 ± 14.97 MJ/kg observed in a laboratory setting, which can potentially be attributed to differences in processing capacity. Multi-stage drying typically has higher energy efficiency when tempering stages are incorporated. The self-circulating design of some drying systems may provide additional opportunities for heat exchange, leading to efficient drying performance without the need for a separate tempering stage. Beyond traditional methods, we have observed a notable shift towards solar-assisted and infrared drying technologies in laboratory settings, reflecting an increasing interest in sustainable and efficient drying solutions. In summary, this review consolidates SEC data for rice drying technologies, analyzes the energy intensity and performance of each drying technology, and identifies data gaps that might be addressed in future research.