A chirped-pulse interleaving method is reported for generation of dual optical frequency combs based on electro-optic phase modulators (EOM) in a free-running all-fiber based system. Methods are discussed to easily modify the linear chirp rate and comb resolution by more than three orders of magnitude and to significantly increase the spectral bandwidth coverage. The agility of the technique is shown to both capture complex line shapes and to magnify rapid passage effects in spectroscopic and molecular dynamics studies of CO2. These methods are well-suited for applications in the areas of remote sensing, reaction dynamics, and sub-Doppler studies across the wide spectral regions accessible to EOMs.