Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Additive manufacturing techniques such as 3D printing are able to generate reproductions of a part in free space without the use of molds; however, the objects produced lack electrical functionality from an applications perspective. At the same time, techniques such as inkjet and laser direct-write (LDW) can be used to print electronic components and connections onto already existing objects, but are not capable of generating a full object on their own. The approach missing to date is the combination of 3D printing processes with direct-write of electronic circuits. Among the numerous direct write techniques available, LDW offers unique advantages and capabilities given its compatibility with a wide range of materials, surface chemistries and surface morphologies. The Naval Research Laboratory (NRL) has developed various LDW processes ranging from the non-phase transformative direct printing of complex suspensions or inks to lase-and-place for embedding entire semiconductor devices. These processes have been demonstrated in digital manufacturing of a wide variety of microelectronic elements ranging from circuit components such as electrical interconnects and passives to antennas, sensors, actuators and power sources. At NRL we are investigating the combination of LDW with 3D printing to demonstrate the digital fabrication of functional parts, such as 3D circuits. Merging these techniques will make possible the development of a new generation of structures capable of detecting, processing, communicating and interacting with their surroundings in ways never imagined before. This paper shows the latest results achieved at NRL in this area, describing the various approaches developed for generating 3D printed electronics with LDW.
Additive manufacturing techniques such as 3D printing are able to generate reproductions of a part in free space without the use of molds; however, the objects produced lack electrical functionality from an applications perspective. At the same time, techniques such as inkjet and laser direct-write (LDW) can be used to print electronic components and connections onto already existing objects, but are not capable of generating a full object on their own. The approach missing to date is the combination of 3D printing processes with direct-write of electronic circuits. Among the numerous direct write techniques available, LDW offers unique advantages and capabilities given its compatibility with a wide range of materials, surface chemistries and surface morphologies. The Naval Research Laboratory (NRL) has developed various LDW processes ranging from the non-phase transformative direct printing of complex suspensions or inks to lase-and-place for embedding entire semiconductor devices. These processes have been demonstrated in digital manufacturing of a wide variety of microelectronic elements ranging from circuit components such as electrical interconnects and passives to antennas, sensors, actuators and power sources. At NRL we are investigating the combination of LDW with 3D printing to demonstrate the digital fabrication of functional parts, such as 3D circuits. Merging these techniques will make possible the development of a new generation of structures capable of detecting, processing, communicating and interacting with their surroundings in ways never imagined before. This paper shows the latest results achieved at NRL in this area, describing the various approaches developed for generating 3D printed electronics with LDW.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.