Herein, we developed a nondestructive detection system with low prediction errors for determining the vitamin C content in Indian jujube. This system comprises a Ge photodetector, a halogen lamp and five near-infrared (NIR) bandpass filters. The detection of vitamin C is enabled by the absorption of its OH and CH2 bonds in the NIR region. The light beams of our system were parallel-polarized and designed to be incident on the fruit at the Brewster angle (θB), which reduces reflectance noise from the fruit’s skin and enhances the OH and CH2 absorption signals of the fruit’s flesh. After the reflectance signal was analyzed by the partial least squares (PLS) algorithm to obtain the predicted vitamin C content of each fruit, the coefficient of prediction ( r p 2 ) and root-mean-square error of prediction (RMSEP) were calculated. When wavelengths of 1200, 1400, 1450, 1500 and 1550 nm were used for probing, r p 2 and RMSEP of the system detecting vitamin C were 0.84 and 1.65 mg/100 g, respectively. In summary, the vitamin C content of Indian jujube was predicted using a low-cost NIR detection system having a high r p 2 and low RMSEP; further, it comprises five parallel-polarized NIR beams and the PLS algorithm.