Infrared (IR) spectroscopy is increasingly being used to analyze food crops for quality and safety purposes in a rapid, nondestructive, and eco-friendly manner.The lack of sensitivity and the overlapping absorption characteristics of major sample matrix components, however, often prevent the direct determination of food contaminants at trace levels. By measuring fungal-induced matrix changes with near IR and mid IR spectroscopy as well as hyperspectral imaging, the indirect determination of mycotoxins in food crops has been realized. Recent studies underline that such IR spectroscopic platforms have great potential for the rapid analysis of mycotoxins along the food and feed supply chain. However, there are no published reports on the validation of IR methods according to official regulations, and those publications that demonstrate their applicability in a routine analytical set-up are scarce. Therefore, the purpose of this review is to discuss the current state-of-the-art and the potential of IR spectroscopic methods for the rapid determination of mycotoxins in food crops. The study critically reflects on the applicability and limitations of IR spectroscopy in routine analysis and provides guidance to non-spectroscopists from the food and feed sector considering implementation of IR spectroscopy for rapid mycotoxin screening. Finally, an outlook on trends, possible fields of applications, and different ways of implementation in the food and feed safety area are discussed.