The loss of phosphorus (P) during the early pedogenesis stage is important at the ecosystem level, and it also plays an important role in the global P cycle. The seasonal variation of total P (Pt) and its fractions along a young soil chronosequence (Hailuogou chronosequence) on the eastern slope of Gongga Mountain, SW China, was investigated based on the modified Hedley fractionation technique to understand P loss during the early pedogenesis stage. The results showed that the mineral P (mainly apatite) was the dominant fraction of Pt in the C horizon of the soil, and the seasonal difference in Pt and its fractions was insignificant. In the A horizon, Pt concentrations decreased markedly compared with those in the C horizon, and as the age of the soil increased, the inorganic P (Pi) significantly decreased and the organic P (Po) prominently increased. Seasonally, the P fractions exhibited various distributions in the A horizon. The variation of Pt and its fractions revealed that the P loss was rapid along the 120-year soil chronosequence. The concentrations of Pt in the original minerals decreased more than 50% in the 52 years since the glacier retreated, and the depletion reached almost 80% at the 120-year pedogenesis. The loss of P from the soil of the Hailuogou chronosequence was mainly attributed to weathering, plant uptake, and transport by runoff. The data obtained indicated that the glacier retreat chronosequence could be used to elucidate the fast rate of P loss during the early pedogenesis stage. Abstract The loss of phosphorus (P) during the early pedogenesis stage is important at the ecosystem level, and it also plays an important role in the global P cycle. The seasonal variation of total P (Pt) and its fractions along a young soil chronosequence (Hailuogou chronosequence) on the eastern slope of Gongga Mountain, SW China, was investigated based on the modified Hedley fractionation technique to understand P loss during the early pedogenesis stage. The results showed that the mineral P (mainly apatite) was the dominant fraction of Pt in the C horizon of the soil, and the seasonal difference in Pt and its fractions was insignificant. In the A horizon, Pt concentrations decreased markedly compared with those in the C horizon, and as the age of the soil increased, the inorganic P (Pi) significantly decreased and the organic P (Po) prominently increased. Seasonally, the P fractions exhibited various distributions in the A horizon. The variation of Pt and its fractions revealed that the P loss was rapid along the 120-year soil chronosequence. The concentrations of Pt in the original minerals decreased more than 50% in the 52 years since the glacier retreated, and the depletion reached almost 80% at the 120-year pedogenesis. The loss of P from the soil of the Hailuogou chronosequence was mainly attributed to weathering, plant uptake, and transport by runoff. The data obtained indicated that the glacier retreat chronosequence could be used to elucidate the fast rate of P loss during the early pedogenesis sta...