In this chapter we overview electric-field-induced effects on block copolymer microdomains. First, we will consider the thin film behavior and elucidate the parameters governing electric-field-induced alignment. We describe the structural evolution of the alignment in an electric field via quasi in situ scanning force microscopy (SFM) using a newly developed SFM setup that allows solvent vapor treatment in the presence of high electric fields. Second, we will turn to bulk structures and show novel effects of high field strengths on the block copolymer phase behavior. We will describe a procedure that allows tuning the morphology and size of the nanoscopic patterns by application of high electric fields and present experimental evidence for the electric-field-induced decrease of the order-disorder transition temperature in a block copolymer.