Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The article contains sections titled: 1. Introduction 2. Enzyme Mimetics and Metal Complexes as Enzyme Mimetics 2.1. Combinatorial Libraries of Catalysts as Enzyme Mimetics 2.2. Combinatorial Synthesis Enzyme Mimetics 2.2.1. Hydrolytically Active Metal Complexes 2.2.2. Evolutionary Solid‐Phase Synthesis of Oxygenase Mimics 2.2.3. Libraries of Organic Acylation Catalysts 3. Combinatorial Catalysis in Asymmetric Synthesis 3.1. Combinatorial Catalyst Libraries in Enantioselective Additions of Dialkylzinc Reagents 3.2. Ligands for the Lewis Acid‐Catalyzed Asymmetric Aza Diels ‐ Alder Reaction 3.3. Divergent Ligand Synthesis for Enantioselective Alkylations 3.4. Chiral Phosphine Ligands for Asymmetric Hydrogenation 3.5. Asymmetric Reactions Catalyzed by Schiff Base‐Type Ligands: the Positional Scanning Approach 3.6. Identification of Novel Catalysts for Asymmetric Epoxidations by the Positional Scanning Approach 4. Multidimensional Combinatorial Screening for the Identification of Novel Catalysts 4.1. Catalyst Discovery and Optimization Using Catalyst Arrays 4.2. Parallel Array Screening for Catalyst Optimization Using Discovery and Focused Ligand Libraries 5. One‐Pot, Multi‐Substrate Screening 6. Combinatorial Approaches to Olefin Polymerization Catalysts 7. Combinatorial Inorganic Catalysis 7.1. Combinatorial Libraries of Homogeneous Polyoxometalate‐Based Catalysts 7.2. Combinatorial Libraries and High‐Throughput Screening of Heterogenous Polyoxometalate Catalysts 8. Combinatorial Heterogeneous Catalysis 8.1. Oxidative Dehydrogenation of Ethane 8.2. Oxidative Dehydrogenation of Propane 8.3. Catalytic Oxidation of CO and Reduction of NO 9. Combinatorial Electrocatalysis 9.1. Electrocatalysts for Fuel Cells 9.2. Combinatorial Electrosynthesis 10. High‐throughput Screening Tools for Catalysis 11. Combinatorial Solid‐State Materials Science 11.1. Materials Library Synthesis 11.1.1. Vapor Deposition Techniques 11.1.2. Alternative Library Synthesis Techniques 11.2. High‐Throughput Screening for Materials 11.2.1. Optical Screening 11.2.2. X‐Ray Characterization 11.3. Applications of Materials 11.3.1. Superconductivity 11.3.2. Ferromagnetic Semiconductors 11.3.3. Magnetoresistant Materials 11.3.4. Dielectric and Ferroelectric Materials 11.3.5. Luminescent Materials 12. Organic Materials and Polymers 12.1. Schiff Bases for Nonlinear Optical (NLO) Materials 12.2. Artificial Receptors for Small Organic Molecules 12.3. New Materials for the Separation of Enantiomers 12.4. Molecular Imprinting 12.5. Polymer Topologies and Functionalization 13. Summary and Outlook
Kombinatorische Methoden dienen in jüngster Zeit auch der Entwicklung neuer Katalysatoren für die organische Synthese. Hier wird eine einfache Strategie für die Anwendung dieser Methoden bei der Entwicklung von Polymerisationskatalysatoren beschrieben. Der Titankomplex 1 (siehe Schema) wurde mit diesem strategischen Ansatz als geeigneter Katalysator für die Synthese syndiotaktischer Polypropylene identifiziert.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.