The catalytic hydrodeoxygenation (HDO) of lignin has long been a hot research topic and vacancy engineering is a new means to develop more efficient catalysts for this process. Oxygen vacancies and sulfur vacancies are both widely used in HDO. Based on the current research status of vacancies in the field of lignin‐derived oxygenates, this Minireview discusses in detail design methods for vacancy engineering, including surface activation, synergistic modification, and morphology control. Moreover, it is clarified that in the HDO reaction, vacancies can act as acidic sites, promote substrate adsorption, and regulate product distribution, whereas for the catalysts, vacancies can enhance stability and reducibility, improve metal dispersion, and improve redox capacity. Finally, the characterization of vacancies is summarized and strategies are proposed to address the current deficiencies in this field.