Portal hypertension is most commonly caused by chronic liver disease. As liver damage progresses, portal pressure gradually elevates and hemodynamics of the portal system gradually change. In normal liver, venous returns from visceral organs join the portal trunk and flow into the liver (hepatopetal blood flow). As portal pressure increases due to liver damage, congestion of some veins of the visceral organ occurs (blood flow to and from). Finally, the direction of some veins (the left gastric vein in particular) of the visceral organ change (hepatofugal blood flow) and develop as collateral veins (portosystemic shunt) to reduce portal pressure. Therefore, esophagogastric varices serve as drainage veins for the portal venous system to reduce the portal pressure. In chronic liver disease, as intrahepatic vascular resistance is increased (backward flow theory) and collateral veins develop, adequate portal hypertension is required to maintain portal flow into the liver through an increase of blood flow into the portal venous system (forward flow theory). Splanchnic and systemic arterial vasodilatations increase the blood flow into the portal venous system (hyperdynamic state) and lead to portal hypertension and collateral formation. Hyperdynamic state, especially around the spleen, is detected in patients with portal hypertension. The spleen is a regulatory organ that maintains portal flow into the liver. In this review, surgical treatment, interventional radiology, endoscopic treatment, and pharmacotherapy for portal hypertension (esophagogastric varices in particular) are described based on the portal hemodynamics using schema.