A connected real analytic hypersurface M⊂Cn+1 whose Levi form is nondegenerate in at least one point—hence at every point of some Zariski-dense open subset—is locally biholomorphic to the model Heisenberg quadric pseudosphere of signature (k,n-k) in one point if and only if, at every other Levi nondegenerate point, it is also locally biholomorphic to some Heisenberg pseudosphere, possibly having a different signature (l,n-l). Up to signature, pseudosphericity then jumps across the Levi degenerate locus and in particular across the nonminimal locus, if there exists any.