Inhibition of amyloid β (Aβ) aggregation and cholinesterase activity are two major therapeutic targets for Alzheimer’s disease (AD). Multifunctional Molecules (MFMs) specifically designed to address other contributing factors, such as metal ion induced abnormalities, oxidative stress, toxic Ab aggregates etc. are very much required. Several multifunctional molecules have been developed using different molecular scaffolds. Reported herein is a new series of four MFMs based on ThT, Azo‐stilbene and metal ion chelating pockets. The synthesis, characterization, and metal chelation ability for [Cu(II) and Zn(II)] are presented herein. Furthermore, we explored their multifunctionality w.r.t. to their (i) recognition of Aβ aggregates and monomeric form, (ii) utility in modulating the aggregation pathways of both metal‐free and metal‐bound amyloid‐β, (iii) ex‐vivo staining of amyloid plaques in 5xFAD mice brain sections, (iv) ability to scavenge free radicals and (v) ability to inhibit cholinesterase activity. Molecular docking studies were also performed with Aβ peptides and acetylcholinesterase enzyme to understand the observed inhibitory effect on activity. Overall, the studies presented here establish the multifunctional nature of these molecules and qualify them as promising candidates for furthermore investigation in the quest for finding Alzheimer’s disease treatment.