In situ microtomography at high pressure and temperature has developed rapidly in the last decade, driven by the development of new high-pressure apparatus. It is now routinely possible to characterize material under high pressure with acquisition times for tomograms of the order of tens of minutes. Here, advantage was taken of the possibility to combine the use of a pink beam projected through a standard Paris-Edinburgh press in order to demonstrate the possibility to perform high-speed synchrotron X-ray tomography at high pressure and temperature allowing complete high-resolution tomograms to be acquired in about 10 s. This gives direct visualization to rapidly evolving or unstable systems, such as flowing liquids or reacting components, and avoids assumptions in the interpretation of quenched samples. Using algebraic reconstruction techniques allows the missing angle artefacts that result from the columns of the press to be minimized.