The COVID-19 pandemic is a major problem facing humanity throughout the world. The rapid and accurate tracking of population flows may therefore be epidemiologically informative. This paper adopts a massive amount of daily population flow data (from Jan 10 to Mar 15, 2020) for China obtained from the Baidu Migration platform to analyze the changes of the spatiotemporal patterns and network characteristics in population flow during the pre-outbreak period, outbreak period, and post-peak period. The results show that (1) for temporal characteristics of population flow, the total population flow varies greatly between the three periods, with an overall trend of the pre-outbreak period flow > the post-peak period flow > the outbreak period flow. Impacted by the lockdown measures, the population flow in various provinces plunged drastically and remained low until the post-peak period, at which time it gradually increased. (2) For the spatial pattern, the pattern of population flow is divided by the geographic demarcation line known as the Hu (Heihe-Tengchong) Line, with a high-density interconnected network in the southeast half and a low-density serial-connection network in the northwest half. During the outbreak period, Wuhan city appeared as a hollow region in the population flow network; during the post-peak period, the population flow increased gradually, but it was mainly focused on intra-provincial flow. (3) For the network characteristic changes, during the outbreak period, the gap in the network status between cities at different administrative levels narrowed significantly. Thus, the feasibility of Baidu migration data, comparison with non-epidemic periods, and optimal implications are discussed. This paper mainly described the difference and specific information under non-normal situation compared with existing results under a normal situation, and analyzed the impact mechanism, which can provide a reference for local governments to make policy recommendations for economic recovery in the future under the epidemic period.