Timed automata (TA) have shown to be a suitable formalism for modeling real-time systems. Moreover, modern model-checking tools allow a designer to check whether a TA complies with the system specification. However, the exact timing constraints of the system are often uncertain during the design phase. Consequently, the designer is able to build a TA with a correct structure, however, the timing constraints need to be tuned to make the TA comply with the specification.In this work, we assume that we are given a TA together with an existential property, such as reachability, that is not satisfied by the TA. We propose a novel concept of a minimal sufficient reduction (MSR) that allows us to identify the minimal set S of timing constraints of the TA that needs to be tuned to meet the specification. Moreover, we employ mixed-integer linear programming to actually find a tuning of S that leads to meeting the specification.