Fibroblasts from patients with idiopathic pulmonary fibrosis (IPF) have been shown to differ from normal lung fibroblasts in functional behaviors that contribute to the pathogenesis of IPF, including the expression of contractile proteins and proliferation, but how such behaviors vary in matrices with stiffness matched to normal and fibrotic lung tissue remains unknown. Here, we tested whether pathologic changes in matrix stiffness control IPF and normal lung tissue-derived fibroblast functions, and compared the relative efficacy of mechanical cues to an antifibrotic lipid mediator, prostaglandin E 2 (PGE 2 ). Fibroblasts were grown on collagen I-coated glass or hydrogel substrates of discrete stiffnesses, spanning the range of normal and fibrotic lung tissue. Traction microscopy was used to quantify contractile function. The CyQuant Cell Proliferation Assay (Invitrogen, Carlsbad, CA) was used to assess changes in cell number, and PGE 2 concentrations were measured by ELISA. We confirmed differences in proliferation and PGE 2 synthesis between IPF and normal tissue-derived fibroblasts on rigid substrates. However, IPF fibroblasts remained highly responsive to changes in matrix stiffness, and both proliferative and contractile differences between IPF and normal fibroblasts were ablated on physiologically soft matrices. We also confirmed the relative resistance of IPF fibroblasts to PGE 2 , while demonstrating that decreases in matrix stiffness and the inhibition of Rho kinase both potently attenuate contractile function in IPF-derived fibroblasts. We conclude that pathologic changes in the mechanical environment control important IPF fibroblast functions. Understanding how mechanical cues control fibroblast function may offer new opportunities for targeting these cells, even when they are resistant to antifibrotic pharmacological agents or biological mediators.Keywords: pulmonary fibrosis; lung; extracellular matrix; fibroblast contractility Idiopathic pulmonary fibrosis (IPF) is a devastating, progressive fibrosing disease with no proven pharmacological therapy (1). The fibroblast is the end effector cell of fibrosis, and fibroblasts increase in number and activation status during IPF. Scattered aggregates of proliferating fibroblasts are consistently observed in fibrotic lungs (2, 3), and the progression of IPF is accompanied by an excessive activation of lung fibroblasts to a synthetic and contractile myofibroblast phenotype responsible for the deposition, contraction, and remodeling of the lung's extracellular matrix (ECM) (4, 5).To understand the pathogenic mechanisms at work in IPF, much effort has been devoted to identifying functional differences in IPF-derived fibroblasts compared with fibroblasts isolated from normal lung tissue. These efforts have demonstrated, among a host of changes, that IPF fibroblasts are more contractile (6), express higher concentrations of a-smooth muscle actin (a-SMA) (7, 8), Type I collagen (8-10), and tissue inhibitors of metalloproteinase (11) than do normal lung tissue-d...