Rajapakse AG, Ming XF, Carvas JM, Yang Z. The hexosamine biosynthesis inhibitor azaserine prevents endothelial inflammation and dysfunction under hyperglycemic condition through antioxidant effects. Am J Physiol Heart Circ Physiol 296: H815-H822, 2009. First published January 9, 2009 doi:10.1152/ajpheart.00756.2008.-Hexosamine biosynthetic pathway (HBP) accounts for some cardiovascular adverse effects of hyperglycemia. We investigated whether the HBP inhibitor azaserine protects against hyperglycemia-induced endothelial damage dependently of HBP. Human endothelial cells isolated from umbilical veins were exposed either to a high (30.5 mmol/l) or low concentration of glucose (5.5 mmol/l) for 4 days, followed by a stimulation with TNF-␣ (1 ng/ml, 24 h). The blockade of the rate-limiting enzyme glutamine:fructose-6-phosphate amidotransferase inhibited HBP flux and oxidative stress (generation of superoxide and peroxynitrite) under the hyperglycemic condition and prevented the synergistic stimulation of VCAM-1 and ICAM-1 expression by hyperglycemia and TNF-␣. In the cells cultured under a low-glucose condition when no increased HBP flux occurred, azaserine enhanced the manganese-superoxide dismutase (MnSOD) protein level and also inhibited the oxidative stress and the expression of VCAM-1 and ICAM-1 in response to TNF-␣. Moreover, the polyphenol resveratrol inhibited the oxidative stress and adhesion molecule expression and did not decrease the HBP flux under the hyperglycemia condition. In addition, in isolated rat aortas exposed to hyperglycemic buffer for 5 h when no significant HBP flux occurred, azaserine upregulated the MnSOD protein level and prevented decreased endothelium-dependent relaxations to acetylcholine. In conclusion, hyperglycemia independently increases oxidative stress and HBP flux, amplifies endothelial inflammation, and impairs endothelial function mainly through oxidative stress and not the HBP pathway. Azaserine protects against hyperglycemic endothelial damage through its antioxidant effect independently of inhibiting HBP pathway. adhesion molecules; endothelium; glucose; O-linked acetylglusamine; superoxide DIABETES MELLITUS is highly associated with an increased risk of cardiovascular morbidity and mortality (10, 34). Chronic hyperglycemia causes glucotoxicity to vascular cells, particularly the endothelial cells, resulting in an increased incidence of cardiovascular events (7). Clinical and experimental studies provide compelling evidence showing that hyperglycemia is associated with impaired endothelium-dependent relaxations (7) and increased endothelial expression of adhesion molecules, vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1) (20, 31). The decreased endothelial nitric oxide (NO) synthase (eNOS) function and upregulation of the adhesion molecules enhance the adhesion of inflammatory cells onto the endothelium followed by a transmigration of the cells into the subendothelial space, a key early process in atherogenesis (15). Numerous proi...