Despite advances in the differentiation of insulin-producing cells from human embryonic stem cells, the generation of mature functional β cells in vitro has remained elusive. To accomplish this goal, we have developed cell culture conditions to closely mimic events occurring during pancreatic islet organogenesis and β cell maturation. In particular, we have focused on recapitulating endocrine cell clustering by isolating and reaggregating immature β-like cells to form islet-sized enriched β-clusters (eBCs). eBCs display physiological properties analogous to primary human β cells, including robust dynamic insulin secretion, increased calcium signalling in response to secretagogues, and improved mitochondrial energization. Notably, endocrine cell *
Indole-3-carbinol (I3C), a naturally occurring component of Brassica vegetables such as cabbage, broccoli, and Brussels sprouts, has been shown to reduce the incidence of spontaneous and carcinogen-induced mammary tumors. Treatment of cultured human MCF7 breast cancer cells with I3C reversibly suppresses the incorporation of [ 3 H]thymidine without affecting cell viability or estrogen receptor (ER) responsiveness. Flow cytometry of propidium iodide-stained cells revealed that I3C induces a G 1 cell cycle arrest. Concurrent with the I3C-induced growth inhibition, Northern blot and Western blot analyses demonstrated that I3C selectively abolished the expression of cyclin-dependent kinase 6 (CDK6) in a dose-and time-dependent manner. Furthermore, I3C inhibited the endogenous retinoblastoma protein phosphorylation and CDK6 phosphorylation of retinoblastoma in vitro to the same extent. After the MCF7 cells reached their maximal growth arrest, the levels of the p21 and p27 CDK inhibitors increased by 50%. The antiestrogen tamoxifen also suppressed MCF7 cell DNA synthesis but had no effect on CDK6 expression, while a combination of I3C and tamoxifen inhibited MCF7 cell growth more stringently than either agent alone. The I3C-mediated cell cycle arrest and repression of CDK6 production were also observed in estrogen receptor-deficient MDA-MB-231 human breast cancer cells, which demonstrates that this indole can suppress the growth of mammary tumor cells independent of estrogen receptor signaling. Thus, our observations have uncovered a previously undefined antiproliferative pathway for I3C that implicates CDK6 as a target for cell cycle control in human breast cancer cells. Moreover, our results establish for the first time that CDK6 gene expression can be inhibited in response to an extracellular antiproliferative signal.Considerable epidemiological evidence suggests that high vegetable diets correlate with low breast cancer risk (1, 2). This phenomenon is likely due to the diverse spectrum of dietary and environmental compounds that can regulate the function and proliferation of mammalian cells by influencing hormone receptor signal transduction pathways (3, 4). Several classes of these naturally occurring hormone-like chemicals have been implicated in the control of tumor cell growth and as chemopreventative agents. One such substance is the dietary compound indole-3-carbinol (I3C), 1 an autolysis product of a glucosinolate, glucobrassicin, which occurs in Brassica vegetables such as cabbage, broccoli, and Brussels sprouts (5, 6). A recent screen of 90 potential chemopreventative agents in a series of six short term bioassays relevant to carcinogen-induced DNA damage, oxidative stress, and tumor initiation and promotion, revealed I3C to be one of only eight compounds effective in all assays (7). Several studies have shown that exposure to dietary I3C markedly reduces the incidence of spontaneous and carcinogen-induced mammary tumors in rodents (8, 9). For example, I3C administered in the diet or by oral intubation pr...
Establishing causal links between non-coding variants and human phenotypes is an increasing challenge. Here we introduce a high-throughput mouse reporter assay for assessing the pathogenic potential of human enhancer variants in vivo and examine nearly a thousand variants in an enhancer repeatedly linked to polydactyly. We show that 71% of all rare non-coding variants previously proposed as causal led to reporter gene expression in a pattern consistent with their pathogenic role. Variants observed to alter enhancer activity were further confirmed to cause polydactyly in knock-in mice. We also used combinatorial and single-nucleotide mutagenesis to evaluate the in vivo impact of mutations affecting all positions of the enhancer and identified additional functional substitutions, including potentially pathogenic variants hitherto not observed in humans. Our results uncover the functional consequences of hundreds of mutations in a phenotype-associated enhancer and establish a widely applicable strategy for systematic in vivo evaluation of human enhancer variants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.