In the process of deepening and developing the current higher education reform, people pay more and more attention to the research of college English education. The key to improve the college English education is to improve the quality of education, and learning evaluation is the key measure to improve the quality of education and training. This paper mainly studies the college English teaching quality evaluation system based on information fusion and optimized RBF neural network decision algorithm. This paper analyzes the main problems and complexity of creating an ideal learning quality evaluation system. On the basis of analyzing the advantages and disadvantages of the previous learning quality evaluation methods, this paper summarizes the existing learning quality evaluation methods and puts forward some suggestions according to the existing evaluation methods. A learning quality evaluation model based on RBF algorithm of neural network is proposed. RBF regularization network method, RBF neural network decision algorithm, and experimental investigation method are used to study the college English teaching quality evaluation system based on information fusion and optimization of RBF neural network decision algorithm. By innovating teaching methods and enriching teaching means, college students’ thirst for English knowledge can be aroused, and teachers’ teaching level can be improved. The results show that 50% of college students think that the level of college English teaching is average and needs to be improved. In the performance evaluation system of college English teaching quality based on information fusion and optimized RBF neural network decision algorithm, it is necessary to establish a learning evaluation system, monitor the learning quality in real time, find problems and improve them in time, and recognize the current situation of education.