We report the impact of the ternary solution phase behaviour on the film morphology and crystallization of a model polymer:fulerene system. We employ UV-Vis absorption spectroscopy, combined with sequential filtration and dilution, to establish the phase diagram for regio-random poly(3-hexylthiophene-2,5-diyl) and phenyl-C61-butyric acid methyl ester (PCBM) in chlorobenzene. The low polymer regio-regularity enables us to focus solely on PCBM crystallization. Films are systematically cast from one-and two-phase regions, with various polymer:fullerene ratios and concentrations in solution establishing a clear link between homogeneous and heterogenous nucleation, and the role of pre-formed aggregates from solutions. Increasing annealing temperature reveals a highly non-otonic nucleation profile, while the crystal growth rate increases steadilly within the range investigated, from 120-200°C. A maximum nucleation rate is observed at 170°C, all but vanishing at 200°C, well below the neat melting point of PCBM. UV ozonolysis is employed to vary substrate energy, and is shown to have a profound impact on crystallization, increasing nucleation rate and promoting a binary crystallization process. Exposure to light, under inert atmosphere, on the other hand, effectively suppresses homogeneous nucleation, but has a considerably smaller effect on heterogeneous nucleation, either from solution aggregates or substrate-driven.Our results establish a quantitative link between solution thermodynamics, crystallization and provide insight into morphological design based on process parameters in a proxy organic photovoltaic system.
Journal Name
ARTICLEThis journal is