This paper proposes a complete tracking system that is capable of long-term, real-time hand tracking with unsupervised initialization and error recovery. Initialization is steered by a three-stage hand detector, combining spatial and temporal information. Hand hypotheses are generated by a random forest detector in the first stage, whereas a simple linear classifier eliminates false positive detections. Resulting detections are tracked by particle filters that gather temporal statistics in order to make a final decision. The detector is scale and rotation invariant, and can detect hands in any pose in unconstrained environments. The resulting discriminative confidence map is combined with a generative particle filter based observation model to enable robust, long-term hand tracking in real-time. The proposed solution is evaluated using several challenging, publicly available datasets, and is shown to clearly outperform other state of the art object tracking methods.