The present thesis proposes an index, called Undetectability Index (UI), to classify the measurements according to their characteristics of not reflecting their errors into the residuals of the weighted least squares state estimation process from a geometric analysis of this estimator. Gross errors in measurements with higher UIs are very difficult to be detected by methods based on the residual analysis, as the errors in those measurements are "masked", i.e., they are not reflected in the residuals. In this sense, critical measurements are the limit case of measurements that mask errors, that is, they have infinite UI and their residuals are always zero independently of their having or not gross errors. Based on the UI a methodology for gross error processing and two algorithms for metering system planning are also proposed in this thesis. These algorithms enable the obtaining of reliable measurement systems (observable and free from critical measurements and critical sets of measurements) with low investment and containing only measurements with UIs lower than a pre-established value. Several simulation results (with IEEE 14-bus and 30-bus systems) have validated the UI and its application.