Figure 1: Our method allows the user to recover the 3D shape of a selected object and insert copies of the object into the AR environment.
ABSTRACTWe present a method for estimating the 3D shape of an object from a sequence of images captured by a hand-held device. The method is well suited to augmented reality applications in that minimal user interaction is required, and the models generated are of an appropriate form. The method proceeds by segmenting the object in every image as it is captured and using the calculated silhouette to update the current shape estimate. In contrast to previous silhouettebased modelling approaches, however, the segmentation process is informed by a 3D prior based on the previous shape estimate. A voting scheme is also introduced in order to compensate for the inevitable noise in the camera position estimates. The combination of the voting scheme with the closed-loop segmentation process provides a robust and flexible shape estimation method. We demonstrate the approach on a number of scenes where segmentation without a 3D prior would be challenging.