Low Frequency AC (LFAC) transmission has been proposed as an alternative to HVDC transmission for the integration of offshore wind. The LFAC offshore grid as a fully power electronic grid with a long HVAC cable provides significant challenges to harmonic stability. This paper presents an impedance based stability analysis to determine the stability of the power electronic offshore system across the harmonic frequency range. The stability analysis is introduced and applied to the LFAC system. The impact of different current and voltage control bandwidths and component sizes on the dynamic impedance of the converters is then examined and their impact on harmonic stability of the LFAC grid is determined. It is found that detailed knowledge of the control parameters and the ability to tune the bandwidths can mitigate significant harmonic instability with the presence of a long HVAC cable. Three phase simulations are then used to validated the impedance based stability technique.