Non-contact and non-destructive acceleration measurement is receiving considerable attention due to their low cost, flexibility, and simplicity of implementation, as well as their excellent performance in some emerging applications such as medical electronics applications, vibration monitoring, and some other special scenarios. In this paper, a visual accelerometer system based on laser speckle optical flow detection named Viaxl is proposed. Compared with the conventional non-contact acceleration measurement method based on a laser system, Viaxl has moderate and stable performance with the advantages of low cost and simplicity of implementation. Experiment results demonstrate that Viaxl, which consists of a commercial camera and a low-cost laser pointer, can achieve real-time, non-contact acceleration measurement, and confirm the basic system performance of Viaxl: a measurement nonlinearity better than 1.3%, up to 31 dB signal-to-noise ratio, and 1150 Hz theoretic bandwidth; this demonstrates the huge potential of Viaxl in a wide range of applications, and provides a new possible technical method for non-contact acceleration detection.