While artificial-intelligence-based methods suffer from lack of transparency, rule-based methods dominate in safety-critical systems. Yet, the latter cannot compete with the first ones in robustness to multiple requirements, for instance, simultaneously addressing safety, comfort, and efficiency. Hence, to benefit from both methods they must be joined in a single system. This paper proposes a decision making and control framework, which profits from advantages of both the rule-and machine-learning-based techniques while compensating for their disadvantages. The proposed method embodies two controllers operating in parallel, called Safety and Learned. A rule-based switching logic selects one of the actions transmitted from both controllers. The Safety controller is prioritized every time, when the Learned one does not meet the safety constraint, and also directly participates in the safe Learned controller training. Decision making and control in autonomous driving is chosen as the system case study, where an autonomous vehicle learns a multi-task policy to safely cross an unprotected intersection. Multiple requirements (i.e., safety, efficiency, and comfort) are set for vehicle operation. A numerical simulation is performed for the proposed framework validation, where its ability to satisfy the requirements and robustness to changing environment is successfully demonstrated.