In 1960, R.E. Kalman published his famous paper describing a recursive solution to the discrete-data linear filtering problem. Since that time, due in large part to advances in digital computing, the Kalman filter has been the subject of extensive research and application, particularly in the area of autonomous or assisted navigation.
For almost three decades the use of features based on Gabor filters has been promoted for their useful properties in image processing. The most important properties are related to invariance to illumination, rotation, scale, and translation. These properties are based on the fact that they are all parameters of Gabor filters themselves. This is especially useful in feature extraction, where Gabor filters have succeeded in many applications, from texture analysis to iris and face recognition. This study provides an overview of Gabor filters in image processing, a short literature survey of the most significant results, and establishes invariance properties and restrictions to the use of Gabor filters in feature extraction. Results are demonstrated by application examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.