The Visual Object Tracking challenge VOT2019 is the seventh annual tracker benchmarking activity organized by the VOT initiative. Results of 81 trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years. The evaluation included the standard VOT and other popular methodologies for short-term tracking analysis as well as the standard VOT methodology for long-term tracking analysis. The VOT2019 challenge was composed of five challenges focusing on different tracking domains: (i) VOT-ST2019 challenge focused on short-term tracking in RGB, (ii) VOT-RT2019 challenge focused on "real-time" shortterm tracking in RGB, (iii) VOT-LT2019 focused on longterm tracking namely coping with target disappearance and reappearance. Two new challenges have been introduced: (iv) VOT-RGBT2019 challenge focused on short-term tracking in RGB and thermal imagery and (v) VOT-RGBD2019 challenge focused on long-term tracking in RGB and depth imagery. The VOT-ST2019, VOT-RT2019 and VOT-LT2019 datasets were refreshed while new datasets were introduced for VOT-RGBT2019 and VOT-RGBD2019. The VOT toolkit has been updated to support both standard shortterm, long-term tracking and tracking with multi-channel imagery. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The dataset, the evaluation kit and the results are publicly available at the challenge website 1 .
Automatic diagnosis of diabetic retinopathy from digital fundus images has been an active research topic in the medical image processing community. The research interest is justified by the excellent potential for new products in the medical industry and significant reductions in health care costs. However, the maturity of proposed algorithms cannot be judged due to the lack of commonly accepted and representative image database with a verified ground truth and strict evaluation protocol. In this study, an evaluation methodology is proposed and an image database with ground truth is described. The database is publicly available for benchmarking diagnosis algorithms. With the proposed database and protocol, it is possible to compare different algorithms, and correspondingly, analyse their maturity for technology transfer from the research laboratories to the medical practice.
For almost three decades the use of features based on Gabor filters has been promoted for their useful properties in image processing. The most important properties are related to invariance to illumination, rotation, scale, and translation. These properties are based on the fact that they are all parameters of Gabor filters themselves. This is especially useful in feature extraction, where Gabor filters have succeeded in many applications, from texture analysis to iris and face recognition. This study provides an overview of Gabor filters in image processing, a short literature survey of the most significant results, and establishes invariance properties and restrictions to the use of Gabor filters in feature extraction. Results are demonstrated by application examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.