A graph is chordal if every induced cycle has exactly three edges. A vertex separator set in a graph is a set of vertices that disconnects two vertices. A graph is δ-hyperbolic if every geodesic triangle is δ-thin. In this paper, we study the relation between vertex separator sets, certain chordality properties that generalize being chordal and the hyperbolicity of the graph. We also give a characterization of being quasi-isometric to a tree in terms of chordality and prove that this condition also characterizes being hyperbolic, when restricted to triangles, and having stable geodesics, when restricted to bigons.