Since two decades, stone bunds have been installed in large areas of the Tigray Highlands, Northern Ethiopia, to control soil erosion by water. Field studies were conducted to quantify the effectiveness, efficiency, side effects and acceptance of stone bunds. Based on measurements on 202 field parcels, average sediment accumulation rate behind 3-21 year old stone bunds is 58 t ha À1 year À1 .The Universal Soil Loss Equation's P-factor for stone bunds was estimated at 0.32. Sediment accumulation rates increase with slope gradient and bund spacing, but decrease with bund age. Truncation of the soil profile at the lower side of the bund does not lead to an important soil fertility decrease, mainly because the dominant soil types in the study area (Regosols, Vertisols and Vertic Cambisols) do not have pronounced vertical fertility gradients. Excessive removal of small rock fragments from the soil surface during stone bund building may lead to a three-fold increase in sheet and rill erosion rates. Negative effects of runoff concentration or crop burial by sediment deposition due to bunds were only found over 60 m along 4 km of studied bunds. As the rodent problem is widespread and generally not specific to stone bunds, it calls for distinct interventions. On plots with stone bunds of different ages (between 3 and 21 years old), there is an average increase in grain yield of 53% in the lower part of the plot, as compared to the central and upper parts. Taking into account the space occupied by the bunds, stone bunds led in 2002 to a mean crop yield increase from 0.58 to 0.65 t ha À1 . The cost of stone bund building averages s13.6 ha À1 year À1