The aim of this work was to study the effects of mastitis induced by intramammary lipopolysaccharide (LPS) challenge on milk oxidative stability, as well as to understand the underlying biochemical processes that cause such changes. LPS challenge was associated with nitric oxide burst from the surrounding mammary epithelial cells and consequently induced nitrosative stress that was induced by the formation of NO 2 d from nitrite by lactoperoxidase. This response was associated with an , 3-fold increased formation of hazardous compounds: nitrotyrosines, carbonyls and lipid peroxides. We sustained the involvement of xanthine oxidase as a major source of hydrogen peroxide. In consistent with previous findings, catalase has been shown to play a major role in modulating the nitrosative stress by oxidizing nitrite to nitrate. The current hygienic quality criteria cannot detect mixing of low-quality milk, such as milk with high somatic cells, and nitrite with high-quality milk. Thus, development of an improved quality control methodology may be important for the production of high-quality milk.Keywords: milk, cow, mastitis, NO and NO 2 d, plasmin system Implication In this study, we show that intramammary treatment with lipopolysaccharide induced nitric oxide burst that was associated with nitrosative stress that reflected the formation of hazardous compounds in milk: nitrotyrosines, carbonyls and lipid peroxides. These changes were associated with impairment in milk quality. Currently, very little is known about the presence of oxidative substances in commercial milk and their industrial and health implications. As mastitis is a prevalent problem in the dairy industry, this study stresses the importance of gaining further information on the effect of different forms of mastitis on milk composition.