Herein, few layer graphene was synthesize using two arc discharge chambers of different volumes to ascertain the influence of chamber size on the quality and yield of graphene. In both arc discharge chambers (A and B), graphite rods were ignited at arc current of 200 A and pressure of 500 Torr to produce vaporized carbon atoms which were deposited on the chamber wall. The synthesized graphene was characterized using the combined effect of UV spectroscopy, X-ray diffraction, Raman spectroscopy, scanning electron spectroscopy and transmission electron spectroscopy. It was observed that, an increase in the chamber size led to an increase in the number of graphene layers (4 – 6 layers) and an increase in the crystalline size D (9.6 – 17.4 nm) as revealed by XRD results. Raman analysis shows lower value of ID/IG of 0.62 indicating the presence of lower defect in chamber A as compared to the ID/IG value of 0.93 observed in chamber B. A graphene yield of 0.96 g was obtained from chamber A while 0.67 g of the same product was obtained from chamber B. The fabricated arc discharge systems suggest that a larger chamber size could promote a better yield of graphene on an industrial scale. Hence, the research is relevant to the development of larger amounts of quality FLG for industrial device applications.