Currently, there is an ever-growing interest in carbon materials with increased deformation-strength, thermophysical parameters. Due to their unique physical and chemical properties, such materials have a wide range of applications in various industries. Many prospects for the use of polymer composite materials based on polyvinylidene fluoride (PVDF) for scientific and technical purposes explain the plethora of studies on their characteristics “structure-property”, processing, application and ecology which keep appearing. Building a broader conceptual picture of new generation polymeric materials is feasible with the use of innovative technologies; thus, achieving a high level of multidisciplinarity and integration of polymer science; its fundamental problems are formed, the solution of which determines a significant contribution to the natural-scientific picture of the modern world. This review provides explanation of PVDF advanced properties and potential applications of this polymer material in its various forms. More specifically, this paper will go over PVDF trademarks presently available on the market, provide thorough overview of the current and potential applications. Last but not least, this article will also delve into the processing and chemical properties of PVDF such as radiation carbonization, β-phase formation, etc.
BiFeO3 (BFO) films on highly oriented pyrolytic graphite (HOPG) substrate were obtained by the atomic layer deposition (ALD) method. The oxidation of HOPG leads to the formation of bubble regions creating defective regions with active centers. Chemisorption occurs at these active sites in ALD. Additionally, carbon interacts with ozone and releases carbon oxides (CO, CO2). Further annealing during the in situ XPS process up to a temperature of 923 K showed a redox reaction and the formation of oxygen vacancies (Vo) in the BFO crystal lattice. Bubble delamination creates flakes of BiFeO3-x/rGO heterostructures. Magnetic measurements (M–H) showed ferromagnetism (FM) at room temperature Ms ~ 120 emu/cm3. The contribution to magnetization is influenced by the factor of charge redistribution on Vo causing the distortion of the lattice as well as by the superstructure formed at the boundary of two phases, which causes strong hybridization due to the superexchange interaction of the BFO film with the FM sublattice of the interface region. The development of a method for obtaining multiferroic structures with high FM values (at room temperature) is promising for magnetically controlled applications.
The objective of this work is to study the delamination of bismuth ferrite prepared by atomic layer deposition on highly oriented pyrolytic graphite (HOPG) substrate. The samples’ structures and compositions are provided by XPS, secondary ion mass spectrometry (SIMS) and Raman spectroscopy. The resulting films demonstrate buckling and delamination from the substrates. The composition inside the resulting bubbles is in a gaseous state. It contains the reaction products captured on the surface during the deposition of the film. The topography of Bi-Fe-O thin films was studied in vacuum and under atmospheric conditions using simultaneous SEM and atomic force microscopy (AFM). Besides complementary advanced imaging, a correlative SEM-AFM analysis provides the possibility of testing the mechanical properties by using a variation of pressure. In this work, the possibility of studying the surface tension of the thin films using a joint SEM-AFM analysis is shown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.