Graphene has emerged as a champion material for a variety of applications cutting across multiple disciplines in science and engineering. Graphene and its derivatives have displayed huge potential as a biosensing material due to their unique physicochemical properties, good electrical conductivity, optical properties, biocompatibility, ease of functionalization, and flexibility. Their widespread use in making biosensors has opened up new possibilities for early diagnosis of life-threatening diseases and real-time health monitoring. Following an introduction and discussion on the significance of fabrication protocols and assembly, this review is intended to assess why graphene is suitable to build better biosensors, the working of existing biosensing schemes and their current status toward commercialization for wearable diagnostic and prognostic devices. We believe this review will provide a critical insight for harnessing graphene as a suitable biosensor for the clinical diagnostics, its future prospects and challenges ahead.