Rhenium is catalytically active for many valuable chemical reactions, and consequently has been the subject of scientific investigation for several decades. However, little is known about the chemical identity of the species present on rhenium surfaces during catalytic reactions because techniques for investigating catalyst surfaces in-situ -such as near-ambient-pressure X-ray photoemission spectroscopy (NAP-XPS) -have only recently become available. In the current work, we present an in-situ XPS study of rhenium catalysts. We examine the oxidized rhenium species that form on a metallic rhenium foil in an oxidizing atmosphere, a reducing atmosphere, and during a model catalytic reaction (i.e. the partial-oxidation of ethylene). We find that, in an oxidizing environment, a Re 2 O 7 film forms on the metal surface, with buried layers of sub-oxides that contain Re 4+ , Re 2+ and Re