The complete genome of a novel torque teno virus species (Torque teno equus virus 2 (TTEqV2) isolate Alberta/2018) was obtained by high throughput sequencing (HTS) of nucleic acid extracted from the lung and liver tissue of a Quarter Horse gelding that died of nonsuppurative encephalitis in Alberta, Canada. The 2,805 nucleotide circular genome is the first complete genome from the Mutorquevirus genus and has been approved as a new species by the International Committee on the Taxonomy of Viruses. The genome contains several characteristic features of torque teno virus (TTV) genomes, including an ORF1 encoding a putative 631 aa capsid protein with an arginine-rich N-terminus, several rolling circle replication associated amino acid motifs, and a downstream polyadenylation signal. A smaller overlapping ORF2 that encodes a protein with an amino acid motif (WX7HX3CXCX5H) which, in general, is highly conserved in TTVs and anelloviruses. The UTR contains two GC-rich tracts, two highly conserved 15 nucleotide sequences, and what appears to be an atypical TATA-box sequence also observed in two other TTV genera. Codon usage analysis of TTEqV2 and 11 other selected anelloviruses from five host species revealed a bias toward adenine ending (A3) codons in the anelloviruses, while in contrast, A3 codons were observed at a low frequency in horse and the four other associated host species examined. Phylogenetic analysis of TTV ORF1 sequences available to date shows TTEqV2 clusters with the only other currently reported member of the Mutorquevirus genus, Torque teno equus virus 1 (TTEqV1, KR902501). Genome-wide pairwise alignment of TTEqV2 and TTEqV1 shows the absence of several highly conserved TTV features within the UTR of TTEqV1, suggesting it is incomplete and TTEqV2 is the first complete genome within the genus Mutorquevirus.