The objective of this meta-analysis was to develop and validate empirical equations predicting BW gain (BWG) and carcass traits of growing cattle from intake and diet composition variables. The modelling was based on treatment mean data from feeding trials in growing cattle, in which the nutrient supply was manipulated by wide ranges of forage and concentrate factors. The final dataset comprised 527 diets in 116 studies. The diets were mainly based on grass silage or grass silage partly or completely replaced by whole-crop silages, hay or straw. The concentrate feeds consisted of cereal grains, fibrous by-products and protein supplements. Mixed model regression analysis with a random study effect was used to develop prediction equations for BWG and carcass traits. The best-fit models included linear and quadratic effects of metabolisable energy (ME) intake per metabolic BW (BW 0.75 ), linear effects of BW 0.75 , and dietary concentrations of NDF, fat and feed metabolisable protein (MP) as significant variables. Although diet variables had significant effects on BWG, their contribution to improve the model predictions compared with ME intake models was small. Feed MP rather than total MP was included in the final model, since it is less correlated to dietary ME concentration than total MP. None of the quadratic terms of feed variables was significant ( P > 0.10) when included in the final models. Further, additional feed variables (e.g. silage fermentation products, forage digestibility) did not have significant effects on BWG. For carcass traits, increased ME intake (ME/BW 0.75 ) improved both dressing proportion ( P < 0.01) and carcass conformation ( P < 0.001) and increased ( P < 0.001) carcass fat score. Increased dietary CP concentration had no significant ( P > 0.10) effect on dressing proportion or carcass conformation score, but it increased ( P < 0.01) carcass fat score. The current study demonstrated that ME intake per BW 0.75 was clearly the most important variable explaining the BWG response in growing cattle. The effect of increased ME supply displayed diminishing responses that could be associated with increased energy concentration of BWG, reduced diet metabolisability (proportion of ME of gross energy) and/or decreased efficiency of ME utilisation for growth with increased intake. Negative effects of increased dietary NDF concentration on BWG were smaller compared to responses that energy evaluation systems predict for energy retention. The present results showed only marginal effects of protein supply on BWG in growing cattle.