An evaluation of milk urea nitrogen (MUN) as a diagnostic of protein feeding in dairy cows was performed using mean treatment data (n = 306) from 50 production trials conducted in Finland (n = 48) and Sweden (n = 2). Data were used to assess the effects of diet composition and certain animal characteristics on MUN and to derive relationships between MUN and the efficiency of N utilization for milk production and urinary N excretion. Relationships were developed using regression analysis based on either models of fixed factors or using mixed models that account for between-experiment variations. Dietary crude protein (CP) content was the best single predictor of MUN and accounted for proportionately 0.778 of total variance [MUN (mg/dL) = -14.2 + 0.17 x dietary CP content (g/kg dry matter)]. The proportion of variation explained by this relationship increased to 0.952 when a mixed model including the random effects of study was used, but both the intercept and slope remained unchanged. Use of rumen degradable CP concentration in excess of predicted requirements, or the ratio of dietary CP to metabolizable energy as single predictors, did not explain more of the variation in MUN (R(2) = 0.767 or 0.778, respectively) than dietary CP content. Inclusion of other dietary factors with dietary CP content in bivariate models resulted in only marginally better predictions of MUN (R(2) = 0.785 to 0.804). Closer relationships existed between MUN and dietary factors when nutrients (CP to metabolizable energy) were expressed as concentrations in the diet, rather than absolute intakes. Furthermore, both MUN and MUN secretion (g/d) provided more accurate predictions of urinary N excretion (R(2) = 0.787 and 0.835, respectively) than measurements of the efficiency of N utilization for milk production (R(2) = 0.769). It is concluded that dietary CP content is the most important nutritional factor influencing MUN, and that measurements of MUN can be utilized as a diagnostic of protein feeding in the dairy cow and used to predict urinary N excretion.
An evaluation of the factors affecting silage dry-matter intake (SDMI) of dairy cows was conducted based on dietary treatment means. The data were divided into six subsets based on the silage treatments used in the experiments: concentration of digestible organic matter in dry matter (D-value) influenced by the maturity of grass ensiled (n ¼ 81), fermentation quality influenced by silage additives (n ¼ 240), dry matter (DM) concentration influenced by wilting of grass prior to ensiling (W; n ¼ 85), comparison of silages made from primary growth or regrowth of grass (n ¼ 46), and replacement of grass silage with legume (L; n ¼ 53) or fermented whole-crop cereal (WC; n ¼ 37) silages. The data were subjected to the mixed model regression analysis. Both silage D-value and fermentation quality significantly affected SDMI. The average effects of D-value and total acid (TA) concentration were 17.0 g and 2 12.8 per 1 g/kg DM, respectively. At a given D-value, silage neutral-detergent fibre (NDF) concentration tended to decrease SDMI. Silage TA concentration was the best fermentation parameter predicting SDMI. Adding other parameters into the multivariate models did not improve the fit and the slopes of the other parameters remained insignificant. Total NDF intake was curvilinearly related to silage D-value the maximum intake being reached at a D-value of 640 g/kg DM. Results imply that physical fill is not limiting SDMI of highly digestible grass silages and that both physical and metabolic factors constrain total DM intake in an interactive manner. Silage DM concentration had an independent curvilinear effect on SDMI. Replacing primary growth silage with regrowth, L or WC silages affected SDMI significantly, the response to regrowth silage being linearly decreasing and to L and WC quadratically increasing. The outcome of factors affecting SDMI was used to update the relative SDMI index as follows: SDMI index ¼ 100 þ 10 £ [(D-value 2 680) £ 0.0170 2 (TA 2 80) £ 0.0128 þ (0.0198 £ (DM 2 250) 2 0.00002364 £ (DM 2 2 250 2 )) 2 0.44 £ a þ 4.13 £ b 2 2.58 £ b 2 þ 5.90 £ c 2 6.14 £ c 2 2 0.0023 £ (550 2 NDF)], where a, b and c represent the proportions (0-1) of regrowth, L or WC silages from total silage DM. For the whole data set, one index unit corresponded to the default value of 0.10 kg in SDMI. The SDMI index explained proportionally 0.852 of the variation in SDMI with 0.34 kg DM per day residual. The updated SDMI index provides improved basis for the practical dairy cow ration formulation and economic evaluation.
The present re-evaluation of a dataset of systematically collected laboratory analyses and in vivo digestibility information for several types of silages gives convincing evidence of the biological weaknesses of feed characterisation based on the proximate feed analysis. The problems include intrinsic failures of the analysis in describing cause-response relationships between forage composition and digestibility, and heavy dependency of the equations on forage specific and environmental factors. It is concluded that proximate analysis is not suitable for characterisation of neither forages nor concentrate feedstuffs. In vitro pepsin-cellulase solubility of organic matter (OMS) and concentration of indigestible neutral detergent fibre (iNDF) predicted forage organic matter digestibility (OMD) with an acceptable accuracy for practical feed evaluation purposes provided that forage type dependent correction equations were employed.The revised detergent system dividing forage dry matter (DM) into almost completely available neutral detergent solubles (NDS), and insoluble residue (neutral detergent fibre, NDF) shows potential for future development. The combined use of long-term in situ ruminal incubation and NDF fractionation can be used to divide forage DM into three biologically meaningful fractions: NDS, iNDF and potentially digestible NDF (pdNDF). The summative models can then be used to predict forage D-value, i.e. apparently digestible organic matter in forage (g kg -1 DM). The models sum digestible NDS, which can be determined by Lucas equation, and digestible NDF (dNDF), which is the amount of pdNDF that is actually digested during any specific fermentation or retention time. Forage type specific summative models were as good as regression equations based on OMS or iNDF in predicting forage D-value and general summative models gave better results than general equations based on iNDF and especially OMS.If the goal is to reduce prediction error of D-value below 15 g kg -1 DM, forage type specific prediction equations should be used regardless of whether they are based on OMS, iNDF or summative models. Another option in the future may be dynamic models, which can incorporate simultaneously the two important dynamic processes constraining feed digestion in ruminants: the rates of NDF passage and degradation (k d ). A G R I C U L T U R A L A N D F O O D S C I E N C E Huhtanen, P. et al. Forage evaluationHowever, a vital prerequisite to employ dynamic models in practical feed evaluation is that iNDF and k d can be easily and reliably determined from on-farm forages. Although a NIRS prediction equation for iNDF will be adopted in practical use in the near future in Finland, the methodology for estimating k d warrants further research.Key words: silage, prediction, cell wall quality, digestibility, near infrared reflectance spectroscopy IntroductionThe main objective of feed evaluation techniques is to predict the availability of nutrients and feeding value of feeds for animal production systems. The methods availabl...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.