This paper presents an important investigation of material removal mechanism in grinding utilizing single grit scratch tests. The investigation helps people to understand the abrasive cutting behaviour when the abrasive cutting edge shape alters during single grit grinding. The results provide fundamental knowledge of the grinding material removal process which helps to improve grinding performance and quality. CBN grits of 40/50 mesh size were used to perform scratch tests on the alloy Inconel 718. The concepts of material pile up ratio and material removal strength were introduced to measure the material removal efficiency during grinding. It is found that pile up ratio decreases and material removal strength increases when the depth of cut increases, albeit the material removal mechanism is highly dependent on the abrasive grit cutting edge shape. The material removal mechanism along the scratch length shows different behaviours at the entrance and exit sides of the scratching passes. When a grit was moving along its scratch path, it pushed material forward resulting in high material accumulation at the exit side of the scratches. Consequently, cutting is more prominent at the entrance side of the scratch, whereas ploughing or pile-up is extremely high at the exit side of the scratches. The research finding provides crucial information for grinding process optimization.