Nitrogen doping has been proven to be a facile modification strategy to improve the electrochemical performance of 2D MXenes, a group of promising candidates for energy storage applications. However, the underlying mechanisms, especially the positions of nitrogen dopants, and its effect on the electrical properties of MXenes, are still largely unexplored. Herein, a comprehensive study is carried out to disclose the nitrogen doping mechanism in Ti 3 C 2 MXene, by employing theoretical simulation and experimental characterization. Three possible sites are found in Ti 3 C 2 T x (T = F, OH, and O) to accommodate the nitrogen dopants: lattice substitution (for carbon), function substitution (for-OH), and surface absorption (on-O). Moreover, electrochemical test results confirm that all the three kinds of nitrogen dopants are favorable for improving the specific capacitance of the Ti 3 C 2 electrode, and the underlying factors are successfully distinguished. By revealing the nitrogen doping mechanisms in Ti 3 C 2 MXene, this work provides theoretical guidelines for modulating the electrochemical properties of MXene materials for energy storage applications.