The Community Structure-Activity Resource (CSAR) datasets are used develop and test a Support Vector Machine-based scoring function in regression mode (SVR). Two scoring functions (SVR-KB and SVR-EP) are derived with the objective of reproducing the trend of the experimental binding affinities provided within the two CSAR datasets. The features used to train SVR-KB are knowledge-based pairwise potentials, while SVR-EP is based on physico-chemical properties. SVR-KB and SVR-EP were compared to seven other widely-used scoring functions, including Glide, X-score, GoldScore, ChemScore, Vina, Dock and PMF. Results showed that SVR-KB trained with features obtained from three-dimensional complexes of the PDBbind dataset outperformed all other scoring functions including best performing X-score, by nearly 0.1 using three correlation coefficients, namely Pearson, Spearman and Kendall. It was interesting that higher performance in rank-ordering did not translate into greater enrichment in virtual screening assessed using the 40 targets of the Directory of Useful Decoys (DUD). To remedy this situation, a variant of SVR-KB (SVR-KBD) was developed by following a target-specific tailoring strategy that we had previously employed to derive SVM-SP. SVR-KBD showed much higher enrichment outperforming all other scoring functions tested, and was comparable in performance to our previously-derived scoring function SVM-SP.