In this study, the effects of the devulcanization process realized by an intermeshing co-rotating twin-screw extruder (ICTSE) on three vulcanized Natural Rubber (NR) composites with different crosslink densities (CD) have been investigated. The extrusion parameters were fixed, as well as the initial material granulometry and auxiliary thermoplastic added to the process. After composites vulcanization, they were characterized accordingly their soluble fraction (SF), crosslink density (CD), mechanical properties and thermogravimetry (TGA). The extrusion was performed on the vulcanized elastomers pursuing selectively crosslink rupture and the same characterization previously cited was conducted on the devulcanized material, except the mechanical properties analysis. The extrusion demonstrate effective devulcanization, evidenced in the increasing of soluble fractions, reduction in crosslink density and thermal stability gain. These results are directly affected by preliminary differences on materials structure and presence of ethylene vinyl-acetate (EVA) on extrusion.