2014 International Conference on Data Science &Amp; Engineering (ICDSE) 2014
DOI: 10.1109/icdse.2014.6974641
|View full text |Cite
|
Sign up to set email alerts
|

Recognition of hand gestures of English alphabets using HOG method

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2015
2015
2023
2023

Publication Types

Select...
2
2

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(2 citation statements)
references
References 12 publications
0
1
0
1
Order By: Relevance
“…Histograms of Oriented Gradients are evaluated for feature extraction where K-Nearest Neighbors (KNN) classifier is used for gesture recognition [2]. Convolution neural network is used for gesture recognition in real time [3]. Data augmentations like zooming, shearing, rotation are applied on datasets before giving it to CNN for better accuracy [4].…”
Section: Related Workmentioning
confidence: 99%
“…Histograms of Oriented Gradients are evaluated for feature extraction where K-Nearest Neighbors (KNN) classifier is used for gesture recognition [2]. Convolution neural network is used for gesture recognition in real time [3]. Data augmentations like zooming, shearing, rotation are applied on datasets before giving it to CNN for better accuracy [4].…”
Section: Related Workmentioning
confidence: 99%
“…Penelitian terkait dengan ASL telah banyak diterapkan dengan berbagai macam metode klasifikasi dan ekstraksi fitur [3] [4]. Berdasarkan penelitian [5] [6] menunjukkan bahwa hasil akurasi yang diperoleh dengan menggunakan klasifikasi k-Nearest Neighbor (k-NN) serta ekstraksi fitur Histogram of Oriented Gradient (HOG) ataupun Linear Discriminant Analysis (LDA), yaitu sebesar 98,33% dan 96%. Pada penelitian [7] citra ASL diekstraksi fiturnya menggunakan HOG lalu menggunakan k-NN sebagai klasifikasinya.…”
Section: Pendahuluanunclassified