The need for an alternative to red cells for oxygen transport in transfusions has led to the creation of hemoglobin-based oxygen carriers, materials produced by chemical modification or genetic engineering of human or bovine hemoglobin. Modifications of the native proteins are necessitated by the spontaneous dissociation of the functional hemoglobin tetramers (alpha(2)beta(2)) into non-functional alphabeta dimers. Based on clinical observations of hypertension resulting from some of these materials, it was proposed that the stabilized tetramers are sufficiently small to extravasate through blood vessels and scavenge nitric oxide, depleting the endothelium of the signal for smooth muscle relaxation. In order to increase size and minimize extravasation while maintaining structure and function, methods for producing larger entities through protein-protein conjugation were developed. Approaches have included the use of nonspecific reagents that polymerize proteins (e.g., polyglutaraldehyde), conjugation to polyethylene glycol, expression of naturally occurring multimers and the use of selective reagents, which is the focus of this article.